If it's not what You are looking for type in the equation solver your own equation and let us solve it.
66x^2+28x=0
a = 66; b = 28; c = 0;
Δ = b2-4ac
Δ = 282-4·66·0
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-28}{2*66}=\frac{-56}{132} =-14/33 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+28}{2*66}=\frac{0}{132} =0 $
| y=3.5-60 | | 4(6k+8)+8=-104 | | 2(t-2)+1=2-(t-4) | | -3x+14=-5x-22 | | G(x)=2x^2+32 | | 4x+7=4+7x | | X2+21x=1100 | | 2.4^3x+1=9 | | 1-7n-2=-9-6n | | 8x-6=8x-13 | | -13=f-4+-15 | | x(x−2)=8 | | 8r-8=2r+10 | | 14g-98+3g9=7 | | 2x+9=-2x-11 | | 5(x-3)+22=100 | | -3=c/5–4 | | V^2-20v-44=0 | | K+6=-6-8k+5k | | 2+k+4K-7=3k+1 | | 0=-7p+7+8p | | 8(x-3)-6x=15 | | 23=7x-4-8 | | -12=-7x+4x | | -2=1+3x-4x | | 4d-4=9 | | -6+3b-7b=6 | | (4+3b)+(5+3b)= | | r-16=-14 | | w-18=11 | | 4(5-3x)-5(3x+2)=8-6x | | a+19=-15 |